Ansys和Matlab培训课程班

大数据核心技术之深度学习培训课程

5 (9653人评价)
  • 精品
  • 笔记:(65387)

  • 学员:(217537)

  • 浏览:(277013)

  • 加入课程

课程介绍

 

其他精品课程班:
  • Halcon中级培训课程培训课程
  • Halcon初级培训课程培训课程
  • 机器视觉系统开发高级培训课程培训课程
  • 机器视觉系统开发中级培训课程培训课程
  • 机器视觉系统开发初级培训课程培训课程
  • 机器视觉培训课程培训课程
  • 基于matlab的图像识别技术培训课程培训课程
  • 图像识别培训课程培训课程
  • 图像处理与识别培训与咨询培训课程
  • 计算机视觉与图像识别培训课程培训课程
  • OpenCV初级培训课程培训课程
  • 数字图像处理培训与咨询培训课程
  • OPENCV培训,opencv技术支持培训课程
  • OpenGL开发培训课程培训课程
  • CCD视觉检测编程培训课程培训课程
  • opencv培训与技术支持培训课程
  • Visualization Toolkit(VTK)培训课程培训课程
  • 实用OpenCV培训课程,opencv技术服务培训课程
  • Halcon中级培训课程培训课程
  • Halcon初级培训课程培训课程
  • 机器视觉系统开发高级培训课程培训课程
  • 机器视觉系统开发中级培训课程培训课程
  • 机器视觉系统开发初级培训课程培训课程
  • 机器视觉培训课程培训课程
  • 基于matlab的图像识别技术培训课程培训课程
  • 图像识别培训课程培训课程
  • 图像处理与识别培训与咨询培训课程
  • 计算机视觉与图像识别培训课程培训课程
  • OpenCV初级培训课程培训课程
  • 数字图像处理培训与咨询培训课程
  • OPENCV培训,opencv技术支持培训课程
  • OpenGL开发培训课程培训课程
  • Hadoop原理、应用与优化培训与咨询培训课程
  • 大数据体系实践培训课程2019培训课程
  • 大数据处理技术架构(基于hadoop和OpenStack)培训课程培训课程
  • Spark大数据处理技术培训课程培训课程
  • Hadoop与Spark大数据架构专题培训与咨询培训课程
  • 大数据(Hadoop、Spark、NOSQL)案例分析与实践培训课程培训课程
  • 基于Spark的大数据分析培训与咨询培训课程
  • Spark大数据处理案例分析与实践培训课程培训课程
  • 大数据落地技术系列培训课程2019培训课程
  • 大数据( ELK+Kafka)培训课程培训课程
  • 大数据搜索框架(ElasticSearch)与应用培训课程培训课程
  • 大数据平台规划与设计-搜索与异地容灾培训课程培训课程
  • 基于Hadoop大数据平台数据治理培训课程培训课程
  • Storm与大数据分析培训与咨询培训课程
  • Spark内存计算框架原理与实践应用培训课程2019培训课程
  • Hadoop架构与大数据开发应用实践培训课程培训课程
  • 大数据工具Flume&Kafka集成实践培训与咨询培训课程
  • 大数据(Hadoop、Spark、NoSQL等)的技术与实践培训课程培训课程
  • 大数据架构设计实战演练培训课程培训课程
  • 大数据系统运维培训与咨询培训课程
  • 大数据平台架构与应用实战培训课程培训课程
  •  
     

    曙海教学优势

      本课程面向企事业项目实际需要,秉承二十一年积累的教学品质,大数据核心技术之深度学习培训课程以项目实现为导向,老师将会与您分享设计的全流程以及工具的综合使用技巧、经验。线上/线下/上门皆可,大数据核心技术之深度学习培训课程专家,课程可定制,热线:4008699035。

      大批企业和曙海
    建立了良好的合作关系,合作企业30万+。曙海的课程培养了大批受企业欢迎的工程师。曙海的课程在业内有着响亮的知名度。

     

    精品课程班级列表

    •    本次深度学习培训大纲如下:

        第一章 机器学习入门

        1) 机器学习简介

        2) 基础知识

        3) 回归和分类

        4) 机器学习的典型应用

        图像分类

        数字识别

        情感分类

        文本挖掘

        第二章 机器学习实践练习

        1) 图像分类实践简介

        2) 实验环境设置

        3) 编程实践

        第三章 深度学习

        1) 深度学习简介

        a) 发展历史

        b) 主要应用

        2) 感知器

        3) 人工神经网络

        4) 前馈神经网络

        第三章 深度学习

        5) 卷积神经网络

        6) 循环神经网络

        7) 最新进展

        第四章 深度学习在计算机视觉中的应用

        1) 图像分类

        2) 物体检测

        3) 物体跟踪

        第五章 深度学习在自然语言处理中的应用

        1) 语言模型

        2) 机器翻译

        3) 文本分类

        第六章 深度学习实践——图像分类

        1) 图像分类实践简介

        2) 实验环境设置

        3) 编程实践

        第六章 深度学习实践——文本情感分类

        1) 文本情感分类实践简介

        2) 实验环境设置

        3) 编程实践




    • 联系曙海客服