Ansys和Matlab培训课程班

Spark深入浅出企业级最佳实践培训课程

5 (9653人评价)
  • 精品
  • 笔记:(65387)

  • 学员:(217537)

  • 浏览:(277013)

  • 加入课程

课程介绍

 

其他精品课程班:
  • Halcon中级培训课程培训课程
  • Halcon初级培训课程培训课程
  • 机器视觉系统开发高级培训课程培训课程
  • 机器视觉系统开发中级培训课程培训课程
  • 机器视觉系统开发初级培训课程培训课程
  • 机器视觉培训课程培训课程
  • 基于matlab的图像识别技术培训课程培训课程
  • 图像识别培训课程培训课程
  • 图像处理与识别培训与咨询培训课程
  • 计算机视觉与图像识别培训课程培训课程
  • OpenCV初级培训课程培训课程
  • 数字图像处理培训与咨询培训课程
  • OPENCV培训,opencv技术支持培训课程
  • OpenGL开发培训课程培训课程
  • CCD视觉检测编程培训课程培训课程
  • opencv培训与技术支持培训课程
  • Visualization Toolkit(VTK)培训课程培训课程
  • 实用OpenCV培训课程,opencv技术服务培训课程
  • Halcon中级培训课程培训课程
  • Halcon初级培训课程培训课程
  • 机器视觉系统开发高级培训课程培训课程
  • 机器视觉系统开发中级培训课程培训课程
  • 机器视觉系统开发初级培训课程培训课程
  • 机器视觉培训课程培训课程
  • 基于matlab的图像识别技术培训课程培训课程
  • 图像识别培训课程培训课程
  • 图像处理与识别培训与咨询培训课程
  • 计算机视觉与图像识别培训课程培训课程
  • OpenCV初级培训课程培训课程
  • 数字图像处理培训与咨询培训课程
  • OPENCV培训,opencv技术支持培训课程
  • OpenGL开发培训课程培训课程
  • Hadoop原理、应用与优化培训与咨询培训课程
  • 大数据体系实践培训课程2019培训课程
  • 大数据处理技术架构(基于hadoop和OpenStack)培训课程培训课程
  • Spark大数据处理技术培训课程培训课程
  • Hadoop与Spark大数据架构专题培训与咨询培训课程
  • 大数据(Hadoop、Spark、NOSQL)案例分析与实践培训课程培训课程
  • 基于Spark的大数据分析培训与咨询培训课程
  • Spark大数据处理案例分析与实践培训课程培训课程
  • 大数据落地技术系列培训课程2019培训课程
  • 大数据( ELK+Kafka)培训课程培训课程
  • 大数据搜索框架(ElasticSearch)与应用培训课程培训课程
  • 大数据平台规划与设计-搜索与异地容灾培训课程培训课程
  • 基于Hadoop大数据平台数据治理培训课程培训课程
  • Storm与大数据分析培训与咨询培训课程
  • Spark内存计算框架原理与实践应用培训课程2019培训课程
  • Hadoop架构与大数据开发应用实践培训课程培训课程
  • 大数据工具Flume&Kafka集成实践培训与咨询培训课程
  • 大数据(Hadoop、Spark、NoSQL等)的技术与实践培训课程培训课程
  • 大数据架构设计实战演练培训课程培训课程
  • 大数据系统运维培训与咨询培训课程
  • 大数据平台架构与应用实战培训课程培训课程
  •  
     

    曙海教学优势

      本课程面向企事业项目实际需要,秉承二十一年积累的教学品质,Spark深入浅出企业级最佳实践培训课程以项目实现为导向,老师将会与您分享设计的全流程以及工具的综合使用技巧、经验。线上/线下/上门皆可,Spark深入浅出企业级最佳实践培训课程专家,课程可定制,热线:4008699035。

      大批企业和曙海
    建立了良好的合作关系,合作企业30万+。曙海的课程培养了大批受企业欢迎的工程师。曙海的课程在业内有着响亮的知名度。

     

    精品课程班级列表

    •    以下就是本次Spark培训内容

        第一部分

        1、Spark的架构设计

        1.1 Spark生态系统剖析

        1.2 Spark的架构设计剖析

        1.3 RDD计算流程解析

        1.4 Spark的出色容错机制

        2、Spark编程模型

        2.1 RDD

        2.2 transformation

        2.3 action

        2.4 lineage

        2.5宽依赖与窄依赖

        3、深入Spark内核

        3.1 Spark集群

        3.2 任务调度

        3.3 DAGScheduler

        3.4 TaskScheduler

        3.5 Task内部揭秘

        4、Spark的广播变量与累加器

        4.1 广播变量的机制

        4.2 广播变量使用最佳实践

        4.3 累加器的机制

        4.4 累加器使用的最佳实践

        5、编写Spark程序

        5.1 程序数据的来源:File、HDFS、HBase、S3等

        5.2 IDE环境构建

        5.3 Maven

        5.4 sbt.

        5.5 编写并部署Spark程序的实例

        6、SparkContext解析和数据加载以及存储

        6.1 源码剖析SparkContext

        6.2 Scala、Java、Python使用SparkContext

        6.4 加载数据成为RDD

        6.5 把数据物化

        第二部分

        7、深入实战RDD

        7.1 DAG

        7.2 深入实战各种Scala RDD Function

        7.3 Spark Java RDD Function

        7.4 RDD的优化问题

        8、Shark的原理和使用

        8.1 Shark与Hive

        8.2 安装和配置Shark

        8.3 使用Shark处理数据

        8.4 在Spark程序中使用Shark Queries

        8.5 SharkServer

        8.6 思考Shark架构

        9、Spark的机器学习

        9.1 LinearRegression

        9.2 K-Means

        9.3 Collaborative Filtering

        10、Spark的图计算GraphX

        10.1 Table Operators

        10.2 Graph Operators

        10.3 GraphX

        11、Spark SQL

        11.1 Parquet支持

        11.2 DSL

        11.3 SQL on RDD

        第三部分

        12、Spark实时流处理

        12.1 DStream

        12.2 transformation

        12.3 checkpoint

        12.4 性能优化

        13、Spark程序的测试

        13.1 编写可测试的Spark程序

        13.2 Spark测试框架解析

        13.3 Spark测试代码实战

        14、Spark的优化

        14.1 Logs

        14.2 并发

        14.3 内存

        14.4 垃圾回收

        14.5 序列化

        14.6 安全

        15、Spark on Yarn

        15.1 Spark on Yarn的架构原理

        15.2 Spark on Yarn的最佳实践

        16、JobServer

        16.1 JobServer的架构设计

        16.2 JobServer提供的接口

        16.3 JobServer最佳实践




    • 联系曙海客服