Ansys和Matlab培训课程班

图像深度学习课程有哪些内容?

5 (9653人评价)
  • 精品
  • 笔记:(65387)

  • 学员:(217537)

  • 浏览:(277013)

  • 加入课程

课程介绍

 

其他精品课程班:
  • Halcon中级培训课程培训课程
  • Halcon初级培训课程培训课程
  • 机器视觉系统开发高级培训课程培训课程
  • 机器视觉系统开发中级培训课程培训课程
  • 机器视觉系统开发初级培训课程培训课程
  • 机器视觉培训课程培训课程
  • 基于matlab的图像识别技术培训课程培训课程
  • 图像识别培训课程培训课程
  • 图像处理与识别培训与咨询培训课程
  • 计算机视觉与图像识别培训课程培训课程
  • OpenCV初级培训课程培训课程
  • 数字图像处理培训与咨询培训课程
  • OPENCV培训,opencv技术支持培训课程
  • OpenGL开发培训课程培训课程
  • CCD视觉检测编程培训课程培训课程
  • opencv培训与技术支持培训课程
  • Visualization Toolkit(VTK)培训课程培训课程
  • 实用OpenCV培训课程,opencv技术服务培训课程
  • Halcon中级培训课程培训课程
  • Halcon初级培训课程培训课程
  • 机器视觉系统开发高级培训课程培训课程
  • 机器视觉系统开发中级培训课程培训课程
  • 机器视觉系统开发初级培训课程培训课程
  • 机器视觉培训课程培训课程
  • 基于matlab的图像识别技术培训课程培训课程
  • 图像识别培训课程培训课程
  • 图像处理与识别培训与咨询培训课程
  • 计算机视觉与图像识别培训课程培训课程
  • OpenCV初级培训课程培训课程
  • 数字图像处理培训与咨询培训课程
  • OPENCV培训,opencv技术支持培训课程
  • OpenGL开发培训课程培训课程
  • Hadoop原理、应用与优化培训与咨询培训课程
  • 大数据体系实践培训课程2019培训课程
  • 大数据处理技术架构(基于hadoop和OpenStack)培训课程培训课程
  • Spark大数据处理技术培训课程培训课程
  • Hadoop与Spark大数据架构专题培训与咨询培训课程
  • 大数据(Hadoop、Spark、NOSQL)案例分析与实践培训课程培训课程
  • 基于Spark的大数据分析培训与咨询培训课程
  • Spark大数据处理案例分析与实践培训课程培训课程
  • 大数据落地技术系列培训课程2019培训课程
  • 大数据( ELK+Kafka)培训课程培训课程
  • 大数据搜索框架(ElasticSearch)与应用培训课程培训课程
  • 大数据平台规划与设计-搜索与异地容灾培训课程培训课程
  • 基于Hadoop大数据平台数据治理培训课程培训课程
  • Storm与大数据分析培训与咨询培训课程
  • Spark内存计算框架原理与实践应用培训课程2019培训课程
  • Hadoop架构与大数据开发应用实践培训课程培训课程
  • 大数据工具Flume&Kafka集成实践培训与咨询培训课程
  • 大数据(Hadoop、Spark、NoSQL等)的技术与实践培训课程培训课程
  • 大数据架构设计实战演练培训课程培训课程
  • 大数据系统运维培训与咨询培训课程
  • 大数据平台架构与应用实战培训课程培训课程
  •  
     

    曙海教学优势

      本课程面向企事业项目实际需要,秉承二十一年积累的教学品质,图像深度学习课程有哪些内容?以项目实现为导向,老师将会与您分享设计的全流程以及工具的综合使用技巧、经验。线上/线下/上门皆可,图像深度学习课程有哪些内容?专家,课程可定制,热线:4008699035。

      大批企业和曙海
    建立了良好的合作关系,合作企业30万+。曙海的课程培养了大批受企业欢迎的工程师。曙海的课程在业内有着响亮的知名度。

     

    精品课程班级列表

    •   课程目标:

        通过本次深度学习培训,学员能够理解深度学习在图像处理方面的原理,优势;掌握主流深度学习框架、环境的搭建及部署;理解如何使用CNN神经网络处理图像,包括样本的标注,选取,训练过程;理解主流语义图像处理网络的原理并学会如何改善性能指标

        课程大纲:

        1.深度学习理论基础

        神经网络的基本结构

        神经网络基本运算单元

        CNN卷积神经网络

        CNN图像处理的原理

        Python及常用深度学习python库

        Linux深度学习环境搭建

        GPU加速深度学习原理

        主流深度学习框架及操作(caffe + tensorflow)

        2.主流深度学习网络

        MNIST卷积网络

        Cifar-10卷积网络

        Alexnet卷积网络

        RNN及LTSM网络

        基本CNN网络的训练

        3.语义图像识别

        语义图像识别原理

        传统算法与深度算法

        样本标注

        样本选取的技巧

        样本处理原则

        4.主流语义识别网络

        RCNN神经网络

        Fast-RCNN神经网络

        FCN全卷积网络与图像识别

        训练过程与过拟合

        模型与网络参数的优化




    • 联系曙海客服